Search found 768 matches

by Admin
06 Jan 2023, 20:05
Forum: Teorie și Probleme
Topic: Partea întreagă și partea fracționară
Replies: 0
Views: 82

Partea întreagă și partea fracționară

Rezolvați în mulțimea numerelor întregi ecuația: $\Big\{\dfrac{5x+17}{3x+3}\Big\} = 0,(6)$ Avem, prin definiție: $\{a \} = a - [a]$ de unde rezultă: $[a] = a - \{a\}$ În plus, $0,(6) = \dfrac{2}{3}$ , deci vom avea: $\Big[\dfrac{5x+17}{3x+3}\Big] = \dfrac{5x+17}{3x+3} - \dfrac{2}{3} = \dfrac{x+5}{x+...
by Admin
01 Jan 2023, 22:15
Forum: Teorie și Probleme
Topic: Pătrate perfecte
Replies: 1
Views: 811

Pătrate perfecte

Problemă . Să se determine numerele naturale nenule $n$ pentru care: $1! + 2! + ... + n!$ este pătrat perfect. Rezolvare Pentru $n \geqslant 5$ avem faptul că $5!$, $6!$, ... , $n!$ se termină în $0$. Și cum $1! + 2! + 3! + 4! = 33$ deci se termină în $3$, și nu există pătrate perfecte ce se termin...
by Admin
01 Jan 2023, 18:39
Forum: Teorie și Probleme
Topic: [10] Principiul lui Dirichlet / Principiul cutiei
Replies: 4
Views: 4457

[10] Principiul lui Dirichlet / Principiul cutiei

Problemă . Se dă un pătrat cu latura de lungime $1$. Să se arate că oricum am alege $5$ puncte interioare lui există cel puțin $2$ astfel încât distanța dintre ele să fie mai mică decât $\dfrac{\sqrt{2}}{2}$. Rezolvare - Principiul lui Dirichlet ( principiul cutiei ) și împărțirea în $4$ pătrate id...
by Admin
31 Dec 2022, 20:56
Forum: Teorie și Probleme
Topic: Inegalităţi algebrice
Replies: 11
Views: 9246

Inegalităţi algebrice

Dacă $a+b = 1$ atunci $a^4 + b^4 \geqslant \dfrac{1}{8}$. Rezolvare : Presupunem că $a, b \geqslant 0$, altfel unul din numere e supraunitar deci inegalitatea este evidentă. Vom folosi de 2 ori inegalitatea dintre media pătratică și cea aritmetică. Avem: $\sqrt{\dfrac{x^2+y^2}{2}} \geqslant \dfrac{x...
by Admin
30 Dec 2022, 16:07
Forum: Examene și Concursuri
Topic: "Combinatorics and Graph Theory" – by Ioan Tomescu
Replies: 5
Views: 7463

"Combinatorics and Graph Theory" – by Ioan Tomescu

https://i.imgur.com/gYb1k5E.png Demonstrație prin inducție după $n$. După mai multe încercări am reușit să demonstrez prin inducție 2 lucruri: - Există $p$ cu proprietatea cerută ($m$ și $n$ fiind date) - Valoarea $m(m-1)p(p-1)$ este pătrat perfect. Cazul $n=0$: $(\sqrt{m} + \sqrt{m-1})^0 = 1 = \sq...
by Admin
30 Dec 2022, 16:01
Forum: Examene și Concursuri
Topic: "Combinatorics and Graph Theory" – by Ioan Tomescu
Replies: 5
Views: 7463

"Combinatorics and Graph Theory" – by Ioan Tomescu

Problema a fost dată la Olimpiada Națională de Matematică, 1980, la clasa a 10-a.
În postarea următoare voi încerca să dau o demonstrație prin inducție.

Image
by Admin
28 Dec 2022, 11:52
Forum: Teorie și Probleme
Topic: Teorema lui Pitagora
Replies: 0
Views: 84

Teorema lui Pitagora

a) Raportul dintre suma catetelor și ipotenuză într-un triunghi dreptunchic isoscel este $\sqrt{2}$. b) Dacă într-un triunghi dreptunghic raportul dintre suma catetelor și ipotenuză este $\sqrt{2}$ atunci triunghiul este și isoscel. Rezolvare . a) Presupunem catetele de lungimi $b=c$ și ipotenuza de...
by Admin
22 Dec 2022, 15:59
Forum: Teorie și Probleme
Topic: Inegalităţi algebrice
Replies: 11
Views: 9246

Inegalităţi algebrice

Dacă numerele reale $x, y, z$ verifică relația $x+y+z = 1$ atunci: $x^2+y^2+z^2 \geqslant \dfrac{1}{3}$ Soluție foarte simplă : $3(x^2+y^2+z^2) = x^2+y^2+z^2+ 2(x^2+y^2+z^2) \geqslant$ $\geqslant x^2+y^2+z^2 + 2(xy+xz+yz) = (x+y+z)^2 = 1$ Soluție folosind inegalitatea Cauchy-Buniakovski-Schwarz (C-B...

Go to advanced search

mateinfo
UP
cron